Article originally appeared in Low-Tech Magazine.
Explore the now-ruined estates of the Irish countryside and
you occasionally find a stone cylinder, as much as several metres high and
wide, open at the top and with a small door at the base. Some resemble the
medieval fortresses that still dot the landscape here --but no one built fortresses
so tiny, or half-buried in the side of a hill. In fact, they are kilns for lime
burning, a now-forgotten industry that sustained many agrarian communities
before energy became cheap.
“Lime” here means neither the citrus fruit nor the tree, but
to a white powder derived from limestone. For at least 7,000 years humans
created lime in kilns, as they might have hardened pottery or smelted ore, and
used the material for dozens of purposes now largely replaced by fossil-fuel by-products
– perhaps most commonly to create mortar for construction.
British and Irish farmers, though, found it most important
to neutralise acid soils and multiply crop production – as much as fourfold, by
some contemporary accounts. For hundreds
of years until the mid-20th century, lime supported a vast and vital
network of village industry -- quarries to mine the limestone, carts and barges
to transport it, and specialists to monitor the burning. In the late 1700s,
according to one survey, County Cork alone was said to contain an amazing 23,000
kilns, or one every 80 acres. (1)
Limestone is mainly coral and shells of long-extinct sea
creatures, squeezed over aeons into a solid mass of calcium carbonate, or
CaCO3. When burned at 900 degrees C or
more it vents carbon dioxide (CO2), leaving behind the volatile calcium oxide (CaO)
– “quicklime,” “burnt lime” or “unslaked lime.” Then, when combined with water
– hydrated or “slaked” -- the quicklime became calcium hydroxide or Ca(OH)2,
and could be put to many uses. Confusingly, all of these have been called
“lime” at times, but in this article, we will call the original rock “limestone,”
the caustic material from the kiln “quicklime,” and the hydrated final product
“lime” for clarity.
The earliest use of lime dates to present-day Turkey between
7,000 and 14,000 years ago, and many ancient civilisations used it to create
mortar between stones. The Romans, however, took lime a step further, mixing it
with various other ingredients to create an early version of cement.
In fact, their version has proven superior to our own in
some ways. Our concrete lasts only decades – as little as a single decade in
seawater -- while Romans created concrete that not only formed in seawater, but
have withstood the pounding of waves for 2,000 years.
The secret, according to two papers released in the summer
of 2013, involved mixing quicklime with volcanic ash to form mortar. Volcanic
ash was plentifully gathered from the volcano at Vesuvius, according to Pliny
the Elder – ironically, the same volcano that would later kill him. Romans then
packed this mortar into wooden forms and lowered them into seawater, which
caused the quicklime to react and form a lime-and-ash mix of waterproof cement.
The papers’ authors say such techniques could prove useful
even today; not only did their concretes stand up to time and the elements
better than ours, but such methods are “greener” – generating less carbon
emission – than our cement manufacture. Crushing rocks into Portland cement
powder requires enormous quantities of energy and accounts for seven per cent
of all industrial carbon emissions on the planet. (2) (3) (4) (5) (6)
Romans brought such technologies with them as they spread
across Europe, so lime kilns appeared in Britain with their invasion and
disappeared for several hundred years after they left. In Ireland, where Romans
never set foot, Normans apparently brought the technology in the 1200s, to
build the round towers that still frequently stand today. (7)
Lime also forms the basis of whitewash, used for centuries
to protect and brighten structures, fences, vehicles and even trees, without
the alarming and unpronounceable stew of toxic ingredients in many modern
paints. Whitewash is fundamentally a mix of lime and water, although it could
also contain salt, milk, linseed oil for water-proofing, or hair or cereal
husks for strength.
The dried lime was safe to handle and even for animals to
lick, but remained mildly alkaline enough to disinfect barn and dairy walls.
Its brilliant whiteness was valued in places like Britain and Ireland, where
the winters grow very dark – Irish cottages were traditionally whitewashed in
spring and again before Christmas. In sunnier climates, however, that same
colour helped keep buildings cool.
Lime had many other uses: Farmers rubbed it on their
livestock’s feet as an antiseptic, or painted it onto fruit trees to prevent
fungal diseases. Some mixed a bit of lime into well-water to disinfect it, or
to preserve eggs for months without spoiling. Tanners used it to remove hair
from hides, gardeners to repel slugs and snails, printers to bleach paper.
Even the corrosive quicklime, the calcium oxide that came straight
from the kiln, had many uses before it was hydrated. It kept pantries and
store-rooms dry – the 1915 household manual “The Best Way” recommended keeping
a bowl of it to reduce humidity, as it sucked moisture from the air. It caught
fire easily – sometimes too easily – and was used to make an early,
high-intensity lamp for the stage – the original limelight. (8)
It also made a rather fearsome weapon, as it could sear the
skin and blind the eyes. In David Hume’s A History of England, he recounts a
battle between English and French ships around 1216, in which the English
captain Phillip d’Albiney ingeniously used quicklime to turn the tide of battle.
He saw that the winds were blowing from his ships to French fleet, and “having
gained the wind of the French, he came down upon them with violence; and
throwing in their faces a great quantity of quick lime, which he purposely
carried on board, he so blinded them, that they were disabled from defending
themselves.”
The compound made a handy terrorist weapon as well; when Irish reformer
Charles Parnell spoke at a political rally in 1891, someone in the crowd threw
quicklime at his face, and “had not [he] shut his eyes in time, he would
undoubtedly have been blinded,” his wife Katherine later wrote.
Quicklime was also shovelled into graves to decompose bodies
more quickly, as Oscar Wilde saw when he was a prisoner at Reading Gaol (Jail)
in Britain:
And all the while the
burning lime
Eats flesh and bone
away
It eats the brittle
bone by night
And the soft flesh by the
day
It eats the flesh and
bone by turns
But eats the heart
away.
Its use in agriculture, however, eclipsed any other use on these
islands, so valuable was its ability to turn acid bog-lands into croplands. Some
40 per cent of the arable land in the world is too acidic for many plants to
grow – the more acidic the soil, the more toxic aluminium plants absorb. These
days, farmers often treat such soils with crushed limestone or other
energy-intensive products, and scientists like Chris Gustafson of the
University of Missouri are trying to genetically engineer aluminium-resistant
crops. In earlier eras, however, farmers found that lime temporarily “sweetened”
or neutralised the soil. (9)
This made lime so valuable that many agrarian communities
supported a network of local industries to create it -- quarries to mine the
limestone, wagons to transport the rocks by road or barges by canal, and
specialists to supervise the burning. By the mid-1600s many families in County
Cork, Ireland, for example, paid their rent by lime-burning on the side,
according to a civil survey of the time. (10)
Farmers treated the soil in quite a straightforward manner: they
shovelled quicklime straight from the kiln onto a horse-drawn cart, drove the
cart to the needed field and drove the horse back and forth across it as though
ploughing. Every several metres the farmer stopped the cart and scooped several
shovels of quicklime in “falls” on the ground -- six to eight barrels to the
acre.
Spreading a highly caustic compound onto cropland might sound inadvisable,
but the next rain both hydrated it into lime and soaked it into the ground. Transporting
the quicklime, however, was dangerous work, as it could spontaneously burst
into flame and burn carts and barns, or simply to eat through wooden containers
if it wasn’t spread quickly. (11) (12)
The process only sweetened the land for a limited amount of time,
according to contemporary reports – three years in some fields, twelve years in
others, depending on conditions. In any case liming had to be continually
re-applied or it “enriched the father but impoverished the son,” went the
saying, so the kilns were kept in steady business. (13)
Kilns themselves needed to be carefully situated: they
needed to be as close as possible to quarries, so that hundreds of tonnes of
rock could be carried with as little effort as possible, by horse or barge. At
the same time they had to lie as close to the lime’s destination as possible –
a fortress or church being built with mortar, or fields that needed sweetening
-- so that the quicklime could also be transported without incident. Moreover,
they could not be situated near populated areas or even campsites, as the
burning lime gave off noxious and potentially lethal gases.
The brick or stone structures were often built into
hillsides to allow people to easily transport coal and lime to the open top, or
mouth, and were often several metres across and about as high. On the inside
they usually tapered down so that gravity alone fed the fuel down, and at the
narrow bottom of the cone, one wall had an arched opening or “eye.”
The kiln had to be filled carefully, with precisely measured
amounts and materials – if the lime did not bake at a high enough temperature
for long enough, the stone would not transform into quicklime and the work
would be in vain. Lime-burners filled the bottom of the kiln with the driest
wood possible – furze-wood was often mentioned – and then the men lay
alternating layers of fuel and limestone.
Perhaps the most common fuel was “colm” – anthracite coal –
although charcoal could also be used, as well as “turf” – dried peat from the
bogs here. Whatever the fuel, it had to be in an opaque layer, insulating the
chunks of limestone from the sides of the kiln and from each other, according
to old lime-burners interviewed decades later for Irish national radio.
Once the kiln was filled, the wood – at the bottom of the
kiln, by that little door – was set on fire, and that, in turn, lit the fuel
through the rest of the structure. Once the kiln was lit there was no going
back; the lime-burners had to maintain a watch over the kiln for the next three
or four days, sleeping nearby.
Burning was often done in winter, when there were fewer farm
chores to be done, so it must have been tempting for men sleeping out in the
cold to move closer to the warm glow of the kiln. According to lime expert
Colin Richards, however, sleeping by the kiln was extremely dangerous, between
the poison gases and the open pit. There were cases of itinerants sleeping near
the mouth for warmth, he said, rolling into it as they slept and being roasted
alive.
Certainly the men did exhausting work for days at a stretch,
making them “thirsty as a lime-burner” as the saying went. A single kiln could
hold a hundred tonnes of material, which had to be shovelled in by hand, yet
delicately measured and arranged inside.
Of course there was less to shovel out – the coal had burned away, and
the limestone had lost some of its mass – but that material was much more
difficult to handle.
“Drawing out the lime underneath was the dirtiest part of it,” said one
anonymous lime-burner who worked in Ireland in the 1930s and 40s and was interviewed
for a radio documentary in 1981. “It was there that you got the dust, and you
got too much of it and you began bleeding from the nostrils.”
With their furnace-like heat, poison vapours, alchemical
transformations, hazardous products and vital importance to agrarian survival,
it was perhaps inevitable that farmers associated kilns with all kinds of magic
and ritual. According to Irish elders interviewed in the 1930s, young
people often performed Halloween rituals around lime-kilns to find out who they
would marry. In one instance, fairies were said to have killed off a farmer’s livestock
after he inadvertently built a kiln in their way.
Other peoples were said to
have summoned evil spirits there; a reverend in Carnmoney, rumoured to have
sold his soul to the Devil, was said to have courteously invited him to a kiln
so the Devil would feel at home. (15)(16)(17)
The lime
burners themselves had a simpler ritual, one they said was practiced among “all
the lime burners of old.”
“You took a bottle with you that morning … of holy water,” one
said, and before the kiln was fired up “you just sprinkled it on top the
stones, and made the Sign of the Cross, for you were burning – what they used
to say was -- you were burning the bones of the Earth.”
Notes:
(1)
Topographical
Directory of County Down, by Samuel Lewis, 1837.
(2)
“Microscopy of historic mortars — a review,”
by J. Elsen, Cement and Concrete Research, July 2005
(3)
“Chemistry and Technology of Lime and
Limestone,” J. Elsen, Cement and Concrete Research, December 2005
(4)
“Material and elastic properties of
Al-tobermorite in ancient Roman seawater concrete,” by Marie D. Jackson, Juhyuk
Moon, Emanuele Gotti, Rae Taylor, Abdul-Hamid Emwas, Cagla Meral, Peter
Guttmann, Pierre Levitz, Hans-Rudolf Wenk, and Paulo J. M. Monteiro, Journal of
the American Ceramic Society.
(5)
“Unlocking the secrets of Al-tobermorite in
Roman seawater concrete,” by Marie D. Jackson, Sejung Rosie Chae, Sean R.
Mulcahy, Cagla Meral, Rae Taylor, Penghui Li, Abdul-Hamid Emwas, Juhyuk Moon,
Seyoon Yoon, Gabriele Vola, Hans-Rudolf Wenk, and Paulo J. M. Monteiro,
American Mineralogist.
(6)
“Roman
Seawater Concrete Holds the Secret to Cutting Carbon Emissions,” Berkeley,
http://newscenter.lbl.gov/news-releases/2013/06/04/roman-concrete/
(7)
“Pre-industrial Lime Kilns,” English Heritage, May 2011
(8)
The Best Way - A Book Of Household Hints
& Recipes, 1915
(9)
“Famine Fighter,” Illumination magazine,
Spring / Summer 2013
(10) The Ancient and
Present State of the County and City of Cork, by C. Smith, 1815 edition.
(11) “Burning the
Bones of the Earth,” a documentary by Radio Telefis Eireann, 1981
(12) Edwardian
Farm, BBC Television
(13) Essay on the
Use of Lime as a Manure, by M. Puvis, 1836.
(14)“Pre-industrial Lime Kilns,” English Heritage, May 2011.
(15) Maureen Cunney,
Currower, Attymass, Ballina, County Mayo, as part of the 1937-38 schools
initiative.
(16)Researches in the South
of Ireland, by Thomas Crofton Croker, p. 82
(17)Irish Witchcraft and Demonology, by St. John D. Seymour, [1913]
4 comments:
Fascinating. I begin to understand why the limestone fields of Pennsylvania were so highly valued. I suppose nature did much of that work for you . . .
I've seen it done, exatly as you describe on the English documentary series Edwardian Farm. They loaded a small kiln with coal and limestone, dug out the quicklime in as much cover as they could find, drew it by horse and cart to the farm, dumped it out as you said and only just beat the rain. It's a fascinating show and a fascinating industry.
Thanks for sharing.
Fine piece Brian. I really learned a lot. You are indeed correct that our western concrete does have a limited lifespan in many applications. Our interstate bridges last only a few decades before they plunge into the river. Ditto highways. The Pantheon in Rome is an immense 130-140' wide dome over 2000 years old which still stands. The first concrete highway somewhere in New England is still in use and was built in the 1890's. The main reason our concrete fails is the rebar which corrodes in the alkaline concrete and swells, spalling the concrete and leading to premature failure. Now new rebars are being used like "greenbar" which is just epoxy painted rebar which may work a lot better as well as new alloy rebars like aluminum bronze which may last forever. The Pantheon is still there because it is unreinforced as is the highway in NE.
Anubis, I know what you mean -- the natural world has all kinds of raw materials for us to rediscover.
Hippy, that was an excellent series -- I cited it in the references!
SV, Thank you! We deserve better, as a people, than to be surrounded by so many spanking new ruins.
Post a Comment